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Let a many-electron Hartree-Fock radial function 

N 
^F(nl;r)=IJPKF(nili;ri) 

i=l 

and the corresponding nonseparable variational function $(nl; r) be expanded in hydrogenic product func­
tions <£H(w/; r). The expansion coefficients (H.nfl\nl) of $ are 0{Z~l) for n'f£n; they vanish when the sets 
n,n' differ by more than two one-electron quantum numbers. It is shown that the expansion coefficients 
(Hn7|HF»> are 0(Z~2) when 

N 

v fan') =JSr—2d (nV) = 2, 
*-i 

i.e., when n and nf differ in two places, and are 0(Z~l) when v(n,nt) = l. In the second case (Hw'/|HFw/) 
= (H.n'l\nl)-\-0(Z~2); the Hartree-Fock and the nonseparable expansion coefficients coincide to first order. 
This result holds only if the one-electron Hartree-Fock functions P H F are not restricted by auxiliary condi­
tions other than normalization. It does not hold, for example, if one requires the P H F to satisfy the ortho­
gonality condition (PJIF(nl;r)PnF(n'l;r)) = d(n,n'). From the result just stated, it follows that many-
electron Hartree-Fock functions characterized by distinct sets of principal quantum numbers but the same 
set of azimuthal quantum numbers are orthogonal to first order in Z~x (but not to higher orders). It also 
follows from the stated result that the coefficient W0 in the Z expansion WKF=W2Z2+WIZ+WQ+0(Z-1) 
of a Hartree-Fock energy is given (in atomic units) by the formula 

WQ = 
v{n ,')=! 

|(H^lFlH^)|2, 
W2-W2' 

W2= - 2 
1 

;=i 2wl'J 

where V is the mutual electrostatic interaction of the electrons. 

I. INTRODUCTION 

THE Z expansions of Hartree-Fock wave functions 
and atomic parameters evaluated from them 

have been studied by Hartree,1 Froese,2 Dalgarno and 
his co-workers,3 and others.4 The first term in the ex­
pansion of a Hartree-Fock wave function is a hydro­
genic wave function; the second term satisfies an 
inhomogeneous second-order differential equation whose 
solution can be obtained in closed form.5 The two 
leading terms contain enough information about the 
wave function for many practical purposes. For ex­
ample, they enable one to calculate the four leading 
coefficients in a Z expansion of the Hartree-Fock energy 
[see Eq. (1) below]; this is usually sufficient. Moreover, 
the first-order calculations yield explicitly Z-dependent 
results; exact Hartree-Fock calculations can be carried 
out only for specific values of Z. This advantage of the 

1 D . R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955); 
The Calculation of Atomic Structures (John Wiley & Sons, Inc., 
New York, 1957), p. 118. 

2 C. Froese, Proc. Roy. Soc. (London) A239, 311 (1957); A244, 
390 (1958); Phys. Rev. 116, 900 (1959); Can. J. Phys. 41, 50 
(1963). 

3 A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960); M. 
Cohen and A. Dalgarno, Proc. Roy. Soc. (London) A261, 565 
(1961); M. Cohen, A. Dalgarno, and J. M. McNamee, ibid., 
A269, 550 (1962). 

4 J. Linderberg, Phys. Rev. 121, 816 (1961); C. S. Sharma and 
C. A. Coulson, Proc. Phys. Soc. (London) 80, 81 (1962); C. S. 
Sharma, ibid. 80, 839 (1962). 

6 E. Constantinides, Thesis, Harvard University, 1963 (unpub­
lished); see also M. Cohen and A. Dalgarno, Proc. Phys. Soc. 
(London) 77, 165 (1961). 

Z-dependent first-order calculations often compensates 
for the (usually small) loss of accuracy. 

The Z expansions of many-electron state vectors 
and energies have another use: They provide the key 
to a useful classification of configuration mixing.6 In 
a nonrelativistic approximation the energy of a many-
electron atom may be expanded in the form 

N 1 

W=W2ZJ+W1Z+W0+O(Z-1), J F 2 = - E — . (i) 
i-i 2ni2 

In order to evaluate the coefficient Wi one must use 
a correct first-order description of the mixing of con­
figurations belonging to the same complex (i.e., the 
same principal quantum numbers and the same parity). 
The correct zero-order state vector is a linear combina­
tion with constant coefficients of hydrogenic-state vec­
tors pertaining to configurations in the same complex. 
A finite calculation employing hydrogenic wave func­
tions suffices for the evaluation of these coefficients 
and of the coefficient W\ in the Z expansion [Eq. (1)] 
of the energy.7 

6 D . Layzer, Astron. J. 56, 43 (1951); Monthly Notices Roy. 
Astron. Soc. 114, 692 (1954); Ann. Phys. (N. Y.) 8, 271 (1959); 
D. Layzer and J. Bahcall, Ann. Phys. (N. Y.) 17, 177 (1962). 

7 W\ is given for all terms belonging to complexes of the type 
(122*) and (122«)° by D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959). 
Godfredsen [Thesis, Harvard University, 1963 (unpublished)] has 
extended these calculations to complexes of the type (l22*3r) and 
( 1 W ) 0 . 
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The Z-independent energy contribution Wo, as well 
as subsequent terms in the energy expansion, may be 
split up into three parts, representing the effects of: 
(a) screening in its broadest sense (departures of the 
one-electron radial functions from the hydrogenic form); 
(b) radial correlation; and (c) configuration mixing in 
its narrowest sense (mixing of configurations labeled 
by distinct sets of azimuthal quantum numbers). The 
Hartree-Fock approximation accounts for the entire 
screening contribution but for none of the remaining 
contributions. 

Successive terms in the energy expansion [Eq. (1)] 
correspond to successive orders of a perturbation ex­
pansion based on hydrogenic-state vectors. The pur­
pose of the present note is to point out that the Hartree-
Fock contribution to Wo corresponds exactly to the 
part of the second-order perturbation energy involving 
energy matrix elements that connect configurations 
which differ through a single principal quantum num­
ber.- Similarly, in the Z expansion of a Hartree-Fock 
function the expansion functions whose coefficients are 
of order Z - 1 differ from the zero-order function through 
one-electron substitutions. 

This way of characterizing the Hartree-Fock ap­
proximation is advantageous for certain problems. For 
example, it enables one to give a short and simple 
proof of an orthogonality property of many-electron 
Hartree-Fock functions, a special case of which was 
recently established by Sharma and Coulson.4 

II. DERIVATION 

An antisymmetric A^-electron ket characterized by 
N pairs of one-electron quantum numbers nH1 and by 
additional quantum numbers V can be written in the 
form 

\nlll--nNlNT) 

Q$(nlll- • -nNlN; rv • -rN))\fi- • -FT)^.^ (2) 

where the antisymmetrizing operator (2, acts on the 
subscripts that distinguish the electron coordinates and 
spins. The radial function $ need not be separable in 
the radial coordinates r*. The best radial function $ in 
the sense of the variation principle satisfies a linear, 
second-order, partial differential equation. In the follow­
ing discussion <£ represents this optimum radial function. 

For the sake of brevity we shall represent the set 
(Z1- • -lN) by the single letter /, the set (r1- • -rN) by the 
single letter r, and so on. The short form of Eq. (2) is 
then 

\nlT)=aHnl;r))\ir). (3) 
We may expand <I> in terms of hydrogenic radial 

functions: 
$ (n; r) = S(n | H '̂)<i>H fa I; r), (4) 

n' 

^H(n'l;r) = JlPii(ni'li;ri), (5) 

where P H is a hydrogenic radial function and the 
generalized sum in (4) extends over all config­
urations—including those for which the principal 
quantum numbers take on continuous, pure imaginary 
values—that have the same azimuthal quantum num­
bers as the initial configuration nl. The coefficients in 
the expansion (4) satisfy the condition 

( ^ | H # / ) = 5 ( ^ y ) + 0 ( Z ~ 1 ) , (6) 
where 

N 

&(n,n') = lL8(ni,ni'). (7) 

In the Hartree-Fock approximation $ is given by 

The one-electron Hartree-Fock functions P H F may be 
expanded in hydrogenic functions 

P H F ( ^ /* ; rx)= S (ni\'Hni,)P^(nifli'9 n), (9) 
nl' 

where 
<»»|H»*/) = 5 (»>* / )+0(Z- 1 ) . (10) 

The many-electron Hartree-Fock function can now be 
written in a form analogous to Eq. (4): 

$HF(w/; r) = S ( H F ^ | H ^ > H ( ^ 7 ; r), (11) 
n' 

where 
N 

(BFn | H»') = I I <»* I Hw") = 0 {7rv), (12) 

the integer v being given by 

N 

v = v fan*) = AT- £ 5 fa^i'). (13) 

(HF^ |H^ r ) vanishes unless i> = 0, 1, or 2. 
We are now in a position to prove the following two 

statements: 

( H F ^ | # / ) = ( ^ | H ^ ) + 0 ( Z - 2 ) , ( „ = l ) 

= 0(Z~% (v=2) 
and 

< H F ^ | H ^ ' ) 
= ( n i . . ,ni.. .nN\ni. • .ni'.. . ^ ) + 0 ( Z ~ 2 ) . (15) 

Equation (14) states that the first-order contributions 
to the Hartree-Fock expansion coefficients coincide 
with those of the corresponding expansion coefficients 
of the exact many-electron radial function when v=l, 
and vanish when v=2. Equation (15) relates the ex­
pansion of the one-electron Hartree-Fock functions to 
the expansion of the exact many-electron radial function. 

To prove Eqs. (14) and (15) we first show that the 
many-electron Hartree-Fock functions lie asymptotic-
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ally (i.e., in the limit Z—»oo) in the product-function 
space spanned by the functions <£H(^'Z; r) with v(n,n') 
= 1. This function space, of course, is a subspace of 
the function space spanned by the complete set of 
functions 3>H. Now, the trial-function space associated 
with the variational function <£ is the space spanned 
by the functions 3>H, while the trial-function space as­
sociated with <£>HF coincides asymptotically with the 
subspace spanned by functions <£H with v=l. I t follows 
that <£HF coincides asymptotically with the projection 
of <£ in the subspace spanned by the <£H with v=l. 
This establishes Eq. (14); Eq. (15) then follows from 
Eqs. (10) and (12). 

The preceding proof breaks down if one imposes the 
usual orthogonality restrictions on the one-electron 
Hartree-Fock functions.8 The space of separable trial 
functions then no longer coincides asymptotically with 
the space spanned by the functions <i>H5(v,l), but with 
a proper subspace of it. 

III. APPLICATIONS 

Orthogonality 

The functions <£ are eigenfunctions of the same linear 
operator. They accordingly satisfy the orthogonality 
relations 

($(n'; r)Hn\ r)>= S (n\Hn")(Hn"\n') = 8(n,nf). (16) 
n" 

Equating to zero the contributions to the sum of order 
Z~l we have 

b[_v(n,nf),\J_(n \ Hn)(Hn \ n') 
+ (n\Hn')(Hn'\n')~] = 0, (17) 

whence, using Eqs. (12) and (14) and the fact that 
(w |Hw)=0( l ) , we obtain 

< $ H 3 V ; r)^F(n; r)) = d(n,n,)+0(Z~2). (18) 
8 If one does not impose the usual orthogonality conditions, 

the Hartree-Fock energy will contain an extra term which is 
0(1) and is usually very small. 

That is, many-electron Hartree-Fock functions labeled 
by the same set of azimuthal quantum numbers are 
orthogonal to first order in Z~l. Sharma and Coulson4 

gave a direct proof of a particular instance of this 
theorem (orthogonality of the Hartree-Fock functions 
for the two lowest XS states of helium-like ions). They 
pointed out that imposing the usual orthogonality re­
quirement on the one-electron Hartree-Fock functions 
would spoil the first-order orthogonality of the many-
electron functions. 

The preceding derivation makes it apparent that 
many-electron Hartree-Fock functions are orthogonal 
only to first order. This, of course, is to be expected on 
general grounds: distinct Hartree-Fock functions are 
eigenfunctions of distinct nonlinear operators. 

TF0
HF and W0 

The Hartree-Fock energy has the Z expansion 

<$HFH<I>HF)=^HF=TF2HFZ2 

+TFi H F Z+TFo H F +0(Z- 1 ) . (19) 

From Eq. (14) and the complete expression for Wo 
given by ordinary second-order perturbation theory, 
we obtain the following formula for Wo in the Hartree-
Fock approximation: 

\(Rn\V\nnf)\2 

WonF= S , (20) 
*<n,n')-l W2—W2' 

where 

1 N 1 

F = E —, T 7 2 = W I F = - Z — - . (21) 
i<j Yij *=i 2nt2 

I am indebted to Professor A. Dalgarno, whose 
comments on the orthogonality problem led me to 
search for the general statement and proof of the ortho­
gonality property of Hartree-Fock functions presented 
above. This research has been supported in part by the 
National Science Foundation. 


