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Let a many-electron Hartree-Fock radial function
N
SHF (y]; r) =11 PHF (i]; r;)
i=1

and the corresponding nonseparable variational function ®(#l; 7) be expanded in hydrogenic product func-
tions ®H(nl; 7). The expansion coefficients (H#n'l|nl) of ® are O(Z7) for n'#n; they vanish when the sets
n,n’ differ by more than two one-electron quantum numbers. It is shown that the expansion coefficients
(Hn'l|HFn) are 0(Z7%) when

N
v(np')=N— 2 s(nini')=2,
=1

i.e., when # and ' differ in two places, and are O(Z™*) when »(n,n')=1. In the second case (Hn'l|HF#l)
=(Hn'l|nl)4-0(Z7?%); the Hartree-Fock and the nonseparable expansion coefficients coincide to first order.
This result holds only if the one-electron Hartree-Fock functions PHEF are not restricted by auxiliary condi-
tions other than normalization. It does not hold, for example, if one requires the PHF to satisfy the ortho-
gonality condition (PHF(ul;7)PEF(n'l;r))=6(n,n"). From the result just stated, it follows that many-
electron Hartree-Fock functions characterized by distinct sets of principal quantum numbers but the same
set of azimuthal quantum numbers are orthogonal to first order in Z (but not to higher orders). It also
follows from the stated result that the coefficient Wy in the Z expansion WEF =W ,22+W1Z+W+0(Z71)
of a Hartree-Fock energy is given (in atomic units) by the formula

| (Hn|V|Hn')|?, I 1
We—Wy' Wa= "El 202’

Wo=

v(n,n')=1

where V is the mutual electrostatic interaction of the electrons.
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I. INTRODUCTION

/ I ‘HE Z expansions of Hartree-Fock wave functions
and atomic parameters evaluated from them
have been studied by Hartree,! Froese,? Dalgarno and
his co-workers,® and others.* The first term in the ex-
pansion of a Hartree-Fock wave function is a hydro-
genic wave function; the second term satisfies an
inhomogeneous second-order differential equation whose
solution can be obtained in closed form.® The two
leading terms contain enough information about the
wave function for many practical purposes. For ex-
ample, they enable one to calculate the four leading
coefficients in a Z expansion of the Hartree-Fock energy
[see Eq. (1) below]; this is usually sufficient. Moreover,
the first-order calculations yield explicitly Z-dependent
results; exact Hartree-Fock calculations can be carried
out only for specific values of Z. This advantage of the
1 D. R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955);
The Calculation of Atomic Structures (John Wiley & Sons, Inc.,
New York, 1957), p. 118.

2 C. Froese, Proc. Roy. Soc. (London) A239, 311 (1957); A244,
52906 ()1958); Phys. Rev. 116, 900 (1959); Can. J. Phys. 41, 50
1963).

3 A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960); M.
Cohen and A. Dalgarno, Proc. Roy. Soc. (London) A261, 565
(1961); M. Cohen, A. Dalgarno, and J. M. McNamee, 4bid.,
A269, 550 (1962).

4 J. Linderberg, Phys. Rev. 121, 816 (1961); C. S. Sharma and
C. A. Coulson, Proc. Phys. Soc. (London) 80, 81 (1962); C. S.
Sharma, ibid. 80, 839 (1962).

5 E. Constantinides, Thesis, Harvard University, 1963 (unpub-

lished); see also M. Cohen and A. Dalgarno, Proc. Phys. Soc.
(London) 77, 165 (1961).

Z-dependent first-order calculations often compensates
for the (usually small) loss of accuracy.

The Z expansions of many-electron state vectors
and energies have another use: They provide the key
to a useful classification of configuration mixing.® In
a nonrelativistic approximation the energy of a many-
electron atom may be expanded in the form

Ny 1
W=W224+W{Z4+We+0(Z™), We=—3 .

=1 zn'i2

In order to evaluate the coefficient W, one must use
a correct first-order description of the mixing of con-
figurations belonging to the same complex (i.e., the
same principal quantum numbers and the same parity).
The correct zero-order state vector is a linear combina-
tion with constant coefficients of hydrogenic-state vec-
tors pertaining to configurations in the same complex.
A finite calculation employing hydrogenic wave func-
tions suffices for the evaluation of these coefficients
and of the coefficient W, in the Z expansion [Eq. (1)]
of the energy.”

6D. Layzer, Astron. J. 56, 43 (1951); Monthly Notices Roy.
Astron. Soc. 114, 692 (1954); Ann. Phys. (N.Y.) 8, 271 (1959);
D. Layzer and J. Bahcall, Ann. Phys. (N. Y.) 17, 177 (1962).
"W, is given for all terms belonging to complexes of the type
(1229) and (1229)° by D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959).
Godfredsen [Thesis, Harvard University, 1963 (unpublished) ] has
ez:lcztgnsd?d these calculations to complexes of the type (122237) and
q3r)0
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The Z-independent energy contribution Wy, as well
as subsequent terms in the energy expansion, may be
split up into three parts, representing the effects of:
(a) screening in its broadest sense (departures of the
one-electron radial functions from the hydrogenic form);
(b) radial correlation; and (c) configuration mixing in
its narrowest sense (mixing of configurations labeled
by distinct sets of azimuthal quantum numbers). The
Hartree-Fock approximation accounts for the entire
screening contribution but for none of the remaining
contributions.

Successive terms in the energy expansion [Eq. (1)]
correspond to successive orders of a perturbation ex-
pansion based on hydrogenic-state vectors. The pur-
pose of the present note is to point out that the Hartree-
Fock contribution to W, corresponds exactly to the
part of the second-order perturbation energy involving
energy matrix elements that connect configurations
which differ through a single principal quantum num-
ber. Similarly, in the Z expansion of a Hartree-Fock
function the expansion functions whose coefficients are
of order Z—! differ from the zero-order function through
one-electron substitutions.

This way of characterizing the Hartree-Fock ap-
proximation is advantageous for certain problems. For
example, it enables one to give a short and simple
proof of an orthogonality property of many-electron
Hartree-Fock functions, a special case of which was
recently established by Sharma and Coulson.*

II. DERIVATION

An antisymmetric N-electron ket characterized by
N pairs of one-electron quantum numbers %% and by
additional quantum numbers I' can be written in the
form

[nil - - NINT)
QB (M - - uN IV vy cry)) [ I Ty, (2)

where the antisymmetrizing operator @ acts on the
subscripts that distinguish the electron coordinates and
spins. The radial function ® need not be separable in
the radial coordinates 7;. The best radial function & in
the sense of the variation principle satisfies a linear,
second-order, partial differential equation. In the follow-
ing discussion ® represents this optimum radial function.
For the sake of brevity we shall represent the set
(- - - 1Y) by the single letter /, the set (#*---#¥) by the
single letter 7, and so on. The short form of Eq. (2) is

then
|nIT)y= @®(nl; r))|IT). 3)

We may expand ® in terms of hydrogenic radial

functions:
®(n; r)=S{n|Hn )PH(n'l;r), 4)

N
Y ('l r)=]] PE(n¥li;r,), (5)

=1
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where P¥ is a hydrogenic radial function and the
generalized sum in (4) extends over all ' config-
urations—including those for which the principal
quantum numbers take on continuous, pure imaginary
values—that have the same azimuthal quantum num-
bers as the initial configuration #l. The coefficients in
the expansion (4) satisfy the condition

(n|Hn')=8(nn')+0(Z7), (6)
where

N

() =1L 8(nin"). ()
i=1

In the Hartree-Fock approximation & is given by
N
O~=PHF=T] PHF(nili; r,). (8)

=1

The one-electron Hartree-Fock functions PHF may be
expanded in hydrogenic functions

PUF(nilis )= S (ni|Hu")PE(n¥lé; 1;), 9
nl’
where
(ni|Hn')=56(n'n")+0(Z1). (10)

The many-electron Hartree-Fock function can now be
written in a form analogous to Eq. (4):

SHUT (5] ; )= S(HFn|Hn )@ (n'l; 7), (11)
where
N
HFn|Hn')=]] (»|Hn")=0(Z), (12)
i=1
the integer » being given by
N
v=v(nn)=N—3 §(n'n"). (13)

=1

(HF#%|Hn') vanishes unless »=0, 1, or 2.
We are now in a position to prove the following two
statements:

(HFn|n')=(n|Hn')+0(Z),
=0(z7),

(»=1)

14
(v=2) (14)

and

(HFn'|Hn')
=@t omie N |l o n ) O(Z72).  (15)
Equation (14) states that the first-order contributions
to the Hartree-Fock expansion coefficients coincide
with those of the corresponding expansion coefficients
of the exact many-electron radial function when v=1,
and vanish when »=2. Equation (15) relates the ex-
pansion of the one-electron Hartree-Fock functions to
the expansion of the exact many-electron radial function.
To prove Eqgs. (14) and (15) we first show that the
many-electron Hartree-Fock functions lie asymptotic-
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ally (i.e., in the limit Z—) in the product-function
space spanned by the functions ®¥(»'l; r) with v(n,n’)
=1. This function space, of course, is a subspace of
the function space spanned by the complete set of
functions ®¥. Now, the trial-function space associated
with the variational function ® is the space spanned
by the functions ®¥, while the trial-function space as-
sociated with ®H¥ coincides asymptotically with the
subspace spanned by functions ®¥ with »=1. It follows
that ®HF coincides asymptotically with the projection
of ® in the subspace spanned by the ®% with »=1.
This establishes Eq. (14); Eq. (15) then follows from
Egs. (10) and (12).

The preceding proof breaks down if one imposes the
usual orthogonality restrictions on the one-electron
Hartree-Fock functions.® The space of separable trial
functions then no longer coincides asymptotically with
the space spanned by the functions ®%§(»,1), but with
a proper subspace of it.

III. APPLICATIONS
Orthogonality

The functions ® are eigenfunctions of the same linear
operator. They accordingly satisfy the orthogonality
relations

@'; N®(n; )= S (n[Hn")(Hn" |n')=8(nn"). (16)

Equating to zero the contributions to the sum of order
Z7! we have
8(v ("), 1 ][ (e [ Hn)(Hn | n')
+(n | Hn')(Ha' [2')]=0, (17)
whence, using Egs. (12) and (14) and the fact that
{(n|Hn)=0(1), we obtain
(@ (' )®HF (5 7))=58(n,n)+0(Z7%).  (18)

81f one does not impose the usual orthogonality conditions,
the Hartree-Fock energy will contain an extra term which is
0O(1) and is usually very small.
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That is, many-electron Hartree-Fock functions labeled
by the same set of azimuthal quantum numbers are
orthogonal to first order in Z~1. Sharma and Coulson*
gave a direct proof of a particular instance of this
theorem (orthogonality of the Hartree-Fock functions
for the two lowest 15 states of helium-like ions). They
pointed out that imposing the usual orthogonality re-
quirement on the one-electron Hartree-Fock functions
would spoil the first-order orthogonality of the many-
electron functions. )

The preceding derivation makes it apparent that
many-electron Hartree-Fock functions are orthogonal
only to first order. This, of course, is to be expected on
general grounds: distinct Hartree-Fock functions are
eigenfunctions of distinct nonlinear operators.

WoHF and W,
The Hartree-Fock energy has the Z expansion

<@HFH(I>HF>E WHF= W2HFZZ

+WHFZ AWML 0(Z7Y).  (19)

From Eq. (14) and the complete expression for W,
given by ordinary second-order perturbation theory,
we obtain the following formula for W, in the Hartree-
Fock approximation:

[{Hn|V|Hn')|?
WOHF= ) (20)
v(n,n’)=1 W2_W2/
where
1 Ny 1
V=3 —, Wy=W1F=-% —\ (21)
i<j i=1 212

I am indebted to Professor A. Dalgarno, whose
comments on the orthogonality problem led me to
search for the general statement and proof of the ortho-
gonality property of Hartree-Fock functions presented
above. This research has been supported in part by the
National Science Foundation.



