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Let a many-electron Hartree-Fock radial function 

N 
^F(nl;r)=IJPKF(nili;ri) 

i=l 

and the corresponding nonseparable variational function $(nl; r) be expanded in hydrogenic product func
tions <£H(w/; r). The expansion coefficients (H.nfl\nl) of $ are 0{Z~l) for n'f£n; they vanish when the sets 
n,n' differ by more than two one-electron quantum numbers. It is shown that the expansion coefficients 
(Hn7|HF»> are 0(Z~2) when 

N 

v fan') =JSr—2d (nV) = 2, 
*-i 

i.e., when n and nf differ in two places, and are 0(Z~l) when v(n,nt) = l. In the second case (Hw'/|HFw/) 
= (H.n'l\nl)-\-0(Z~2); the Hartree-Fock and the nonseparable expansion coefficients coincide to first order. 
This result holds only if the one-electron Hartree-Fock functions P H F are not restricted by auxiliary condi
tions other than normalization. It does not hold, for example, if one requires the P H F to satisfy the ortho
gonality condition (PJIF(nl;r)PnF(n'l;r)) = d(n,n'). From the result just stated, it follows that many-
electron Hartree-Fock functions characterized by distinct sets of principal quantum numbers but the same 
set of azimuthal quantum numbers are orthogonal to first order in Z~x (but not to higher orders). It also 
follows from the stated result that the coefficient W0 in the Z expansion WKF=W2Z2+WIZ+WQ+0(Z-1) 
of a Hartree-Fock energy is given (in atomic units) by the formula 

WQ = 
v{n ,')=! 

|(H^lFlH^)|2, 
W2-W2' 

W2= - 2 
1 

;=i 2wl'J 

where V is the mutual electrostatic interaction of the electrons. 

I. INTRODUCTION 

THE Z expansions of Hartree-Fock wave functions 
and atomic parameters evaluated from them 

have been studied by Hartree,1 Froese,2 Dalgarno and 
his co-workers,3 and others.4 The first term in the ex
pansion of a Hartree-Fock wave function is a hydro
genic wave function; the second term satisfies an 
inhomogeneous second-order differential equation whose 
solution can be obtained in closed form.5 The two 
leading terms contain enough information about the 
wave function for many practical purposes. For ex
ample, they enable one to calculate the four leading 
coefficients in a Z expansion of the Hartree-Fock energy 
[see Eq. (1) below]; this is usually sufficient. Moreover, 
the first-order calculations yield explicitly Z-dependent 
results; exact Hartree-Fock calculations can be carried 
out only for specific values of Z. This advantage of the 

1 D . R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955); 
The Calculation of Atomic Structures (John Wiley & Sons, Inc., 
New York, 1957), p. 118. 

2 C. Froese, Proc. Roy. Soc. (London) A239, 311 (1957); A244, 
390 (1958); Phys. Rev. 116, 900 (1959); Can. J. Phys. 41, 50 
(1963). 

3 A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960); M. 
Cohen and A. Dalgarno, Proc. Roy. Soc. (London) A261, 565 
(1961); M. Cohen, A. Dalgarno, and J. M. McNamee, ibid., 
A269, 550 (1962). 

4 J. Linderberg, Phys. Rev. 121, 816 (1961); C. S. Sharma and 
C. A. Coulson, Proc. Phys. Soc. (London) 80, 81 (1962); C. S. 
Sharma, ibid. 80, 839 (1962). 

6 E. Constantinides, Thesis, Harvard University, 1963 (unpub
lished); see also M. Cohen and A. Dalgarno, Proc. Phys. Soc. 
(London) 77, 165 (1961). 

Z-dependent first-order calculations often compensates 
for the (usually small) loss of accuracy. 

The Z expansions of many-electron state vectors 
and energies have another use: They provide the key 
to a useful classification of configuration mixing.6 In 
a nonrelativistic approximation the energy of a many-
electron atom may be expanded in the form 

N 1 

W=W2ZJ+W1Z+W0+O(Z-1), J F 2 = - E — . (i) 
i-i 2ni2 

In order to evaluate the coefficient Wi one must use 
a correct first-order description of the mixing of con
figurations belonging to the same complex (i.e., the 
same principal quantum numbers and the same parity). 
The correct zero-order state vector is a linear combina
tion with constant coefficients of hydrogenic-state vec
tors pertaining to configurations in the same complex. 
A finite calculation employing hydrogenic wave func
tions suffices for the evaluation of these coefficients 
and of the coefficient W\ in the Z expansion [Eq. (1)] 
of the energy.7 

6 D . Layzer, Astron. J. 56, 43 (1951); Monthly Notices Roy. 
Astron. Soc. 114, 692 (1954); Ann. Phys. (N. Y.) 8, 271 (1959); 
D. Layzer and J. Bahcall, Ann. Phys. (N. Y.) 17, 177 (1962). 

7 W\ is given for all terms belonging to complexes of the type 
(122*) and (122«)° by D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959). 
Godfredsen [Thesis, Harvard University, 1963 (unpublished)] has 
extended these calculations to complexes of the type (l22*3r) and 
( 1 W ) 0 . 
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The Z-independent energy contribution Wo, as well 
as subsequent terms in the energy expansion, may be 
split up into three parts, representing the effects of: 
(a) screening in its broadest sense (departures of the 
one-electron radial functions from the hydrogenic form); 
(b) radial correlation; and (c) configuration mixing in 
its narrowest sense (mixing of configurations labeled 
by distinct sets of azimuthal quantum numbers). The 
Hartree-Fock approximation accounts for the entire 
screening contribution but for none of the remaining 
contributions. 

Successive terms in the energy expansion [Eq. (1)] 
correspond to successive orders of a perturbation ex
pansion based on hydrogenic-state vectors. The pur
pose of the present note is to point out that the Hartree-
Fock contribution to Wo corresponds exactly to the 
part of the second-order perturbation energy involving 
energy matrix elements that connect configurations 
which differ through a single principal quantum num
ber.- Similarly, in the Z expansion of a Hartree-Fock 
function the expansion functions whose coefficients are 
of order Z - 1 differ from the zero-order function through 
one-electron substitutions. 

This way of characterizing the Hartree-Fock ap
proximation is advantageous for certain problems. For 
example, it enables one to give a short and simple 
proof of an orthogonality property of many-electron 
Hartree-Fock functions, a special case of which was 
recently established by Sharma and Coulson.4 

II. DERIVATION 

An antisymmetric A^-electron ket characterized by 
N pairs of one-electron quantum numbers nH1 and by 
additional quantum numbers V can be written in the 
form 

\nlll--nNlNT) 

Q$(nlll- • -nNlN; rv • -rN))\fi- • -FT)^.^ (2) 

where the antisymmetrizing operator (2, acts on the 
subscripts that distinguish the electron coordinates and 
spins. The radial function $ need not be separable in 
the radial coordinates r*. The best radial function $ in 
the sense of the variation principle satisfies a linear, 
second-order, partial differential equation. In the follow
ing discussion <£ represents this optimum radial function. 

For the sake of brevity we shall represent the set 
(Z1- • -lN) by the single letter /, the set (r1- • -rN) by the 
single letter r, and so on. The short form of Eq. (2) is 
then 

\nlT)=aHnl;r))\ir). (3) 
We may expand <I> in terms of hydrogenic radial 

functions: 
$ (n; r) = S(n | H '̂)<i>H fa I; r), (4) 

n' 

^H(n'l;r) = JlPii(ni'li;ri), (5) 

where P H is a hydrogenic radial function and the 
generalized sum in (4) extends over all config
urations—including those for which the principal 
quantum numbers take on continuous, pure imaginary 
values—that have the same azimuthal quantum num
bers as the initial configuration nl. The coefficients in 
the expansion (4) satisfy the condition 

( ^ | H # / ) = 5 ( ^ y ) + 0 ( Z ~ 1 ) , (6) 
where 

N 

&(n,n') = lL8(ni,ni'). (7) 

In the Hartree-Fock approximation $ is given by 

The one-electron Hartree-Fock functions P H F may be 
expanded in hydrogenic functions 

P H F ( ^ /* ; rx)= S (ni\'Hni,)P^(nifli'9 n), (9) 
nl' 

where 
<»»|H»*/) = 5 (»>* / )+0(Z- 1 ) . (10) 

The many-electron Hartree-Fock function can now be 
written in a form analogous to Eq. (4): 

$HF(w/; r) = S ( H F ^ | H ^ > H ( ^ 7 ; r), (11) 
n' 

where 
N 

(BFn | H»') = I I <»* I Hw") = 0 {7rv), (12) 

the integer v being given by 

N 

v = v fan*) = AT- £ 5 fa^i'). (13) 

(HF^ |H^ r ) vanishes unless i> = 0, 1, or 2. 
We are now in a position to prove the following two 

statements: 

( H F ^ | # / ) = ( ^ | H ^ ) + 0 ( Z - 2 ) , ( „ = l ) 

= 0(Z~% (v=2) 
and 

< H F ^ | H ^ ' ) 
= ( n i . . ,ni.. .nN\ni. • .ni'.. . ^ ) + 0 ( Z ~ 2 ) . (15) 

Equation (14) states that the first-order contributions 
to the Hartree-Fock expansion coefficients coincide 
with those of the corresponding expansion coefficients 
of the exact many-electron radial function when v=l, 
and vanish when v=2. Equation (15) relates the ex
pansion of the one-electron Hartree-Fock functions to 
the expansion of the exact many-electron radial function. 

To prove Eqs. (14) and (15) we first show that the 
many-electron Hartree-Fock functions lie asymptotic-
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ally (i.e., in the limit Z—»oo) in the product-function 
space spanned by the functions <£H(^'Z; r) with v(n,n') 
= 1. This function space, of course, is a subspace of 
the function space spanned by the complete set of 
functions 3>H. Now, the trial-function space associated 
with the variational function <£ is the space spanned 
by the functions 3>H, while the trial-function space as
sociated with <£>HF coincides asymptotically with the 
subspace spanned by functions <£H with v=l. I t follows 
that <£HF coincides asymptotically with the projection 
of <£ in the subspace spanned by the <£H with v=l. 
This establishes Eq. (14); Eq. (15) then follows from 
Eqs. (10) and (12). 

The preceding proof breaks down if one imposes the 
usual orthogonality restrictions on the one-electron 
Hartree-Fock functions.8 The space of separable trial 
functions then no longer coincides asymptotically with 
the space spanned by the functions <i>H5(v,l), but with 
a proper subspace of it. 

III. APPLICATIONS 

Orthogonality 

The functions <£ are eigenfunctions of the same linear 
operator. They accordingly satisfy the orthogonality 
relations 

($(n'; r)Hn\ r)>= S (n\Hn")(Hn"\n') = 8(n,nf). (16) 
n" 

Equating to zero the contributions to the sum of order 
Z~l we have 

b[_v(n,nf),\J_(n \ Hn)(Hn \ n') 
+ (n\Hn')(Hn'\n')~] = 0, (17) 

whence, using Eqs. (12) and (14) and the fact that 
(w |Hw)=0( l ) , we obtain 

< $ H 3 V ; r)^F(n; r)) = d(n,n,)+0(Z~2). (18) 
8 If one does not impose the usual orthogonality conditions, 

the Hartree-Fock energy will contain an extra term which is 
0(1) and is usually very small. 

That is, many-electron Hartree-Fock functions labeled 
by the same set of azimuthal quantum numbers are 
orthogonal to first order in Z~l. Sharma and Coulson4 

gave a direct proof of a particular instance of this 
theorem (orthogonality of the Hartree-Fock functions 
for the two lowest XS states of helium-like ions). They 
pointed out that imposing the usual orthogonality re
quirement on the one-electron Hartree-Fock functions 
would spoil the first-order orthogonality of the many-
electron functions. 

The preceding derivation makes it apparent that 
many-electron Hartree-Fock functions are orthogonal 
only to first order. This, of course, is to be expected on 
general grounds: distinct Hartree-Fock functions are 
eigenfunctions of distinct nonlinear operators. 

TF0
HF and W0 

The Hartree-Fock energy has the Z expansion 

<$HFH<I>HF)=^HF=TF2HFZ2 

+TFi H F Z+TFo H F +0(Z- 1 ) . (19) 

From Eq. (14) and the complete expression for Wo 
given by ordinary second-order perturbation theory, 
we obtain the following formula for Wo in the Hartree-
Fock approximation: 

\(Rn\V\nnf)\2 

WonF= S , (20) 
*<n,n')-l W2—W2' 

where 

1 N 1 

F = E —, T 7 2 = W I F = - Z — - . (21) 
i<j Yij *=i 2nt2 

I am indebted to Professor A. Dalgarno, whose 
comments on the orthogonality problem led me to 
search for the general statement and proof of the ortho
gonality property of Hartree-Fock functions presented 
above. This research has been supported in part by the 
National Science Foundation. 


